|         |         | 
 
 
For a Real Positive  , the Riemann-Siegel
, the Riemann-Siegel  function is defined by
 function is defined by
 
 (thick line) on
 (thick line) on 
 , where
, where  is the Riemann Zeta Function.
 is the Riemann Zeta Function.
 
 
The Riemann-Siegel theta function appearing above is defined by
|  |  | ![$\displaystyle \Im[\ln\Gamma({\textstyle{1\over 4}}+{\textstyle{1\over 2}}it)-{\textstyle{1\over 2}}t\ln \pi]$](r_1518.gif) | |
|  | ![$\displaystyle \arg[\Gamma({\textstyle{1\over 4}}+{\textstyle{1\over 2}}it)]-{\textstyle{1\over 2}}t\ln \pi.$](r_1519.gif) | 
 
See also Riemann Zeta Function
References
Vardi, I.  Computational Recreations in Mathematica.  Reading, MA: Addison-Wesley, p. 143, 1991.